
Threshold and Filter

What is CV?

01

What is CV?

Computer Vision (CV) is an interdisciplinary research field dedicated to
enabling computers to understand and interpret content in the visual
world

3

What is CV?

4

Purpose

➢ Automate vision tasks

• Object recognition, face recognition, image classification, video analysis, etc.

➢ Understand and interpret visual data

• Extract meaningful information, such as objects in the image, location, motion, etc.

➢ Practical Problems

• Autonomous driving, medical image analysis, safety monitoring, industrial inspection, robot
navigation, etc.

What is CV?

5

Differences between CV and Image Processing

➢ CV

• Definition: Focus on how to extract and understand useful information

• Target: Enable computers to "see" and "understand" information to make judgments and
decisions

• Operations: Object detection and recognition, image segmentation and classification, etc.

➢ Image Processing

• Definition: Focus on how to process and improve the quality of digital images including
image enhancement, restoration, filtering, etc.

• Target: Improve image quality to make it more suitable for human observation

• Operations: Denoising, sharpening, smoothing, contrast adjustment, edge detection, etc.

What is CV?

6

History

Visual Perception

02

Visual Perception

8

Eye Structure

Visual Perception

9

Image formation in eye

Visual Perception

10

Image acquisition process

Visual Perception

11

Image sampling and quantization

➢ Sampling: digitizing the coordinate values

➢ Quantization: digitizing the amplitude values

Visual Perception

12

Representing Digital Image

Visual Perception

13

Spatial Resolution

➢ A measure of an image or imaging system's ability to distinguish or present
fine details

Visual Perception

14

Pixel Concept

➢ Each pixel in color image is
constructed with three channels
(RGB)

➢ Each pixel in gray image is only
constructed with one channel

Threshold

03

Threshold

16

Histogram

➢ A visual representation of the distribution of quantitative data

◆ Let rk, for k=0, 1, 2, ..., L-1, denote the intensities of an L-level digital image, f(x, y)

The unnormalized histogram ℎ 𝑟𝑘 = 𝑛𝑘 for k = 0, 1, 2, …, L-1

◆ 𝑛𝑘 is the number of pixels in image with intensity 𝑟𝑘, and the subdivisions of the intensity

scale are called histogram bins

◆ The normalized histogram 𝑝 𝑟𝑘 =
𝑛𝑘

𝑀𝑁
where M and N are the row and column of image

Threshold

17

Threshold

➢ A value to separate foreground from background

Gray image Gray image after threshold

Threshold

18

But, how to set best threshold?
Manual? Auto

Threshold

19

A suitable threshold

➢ Analyze image histogram

➢ Drawbacks:

◆ The valley may be so broad

◆ There may be a number of minima because of
the type of detail in the image, and selecting the
most significant one will be difficult

◆ Noise disturbance

◆ There may be no clearly visible valley in the
distribution

◆ Either of the major peaks in the histogram
(usually that due to the background) may be
much larger than the other and this will then
bias the position of the minimum

◆ The histogram may be inherently multimodal

Threshold

20

A suitable threshold

➢ Local

◆ Local thresholding

➢ Global

◆ Variance-based thresholding

◆ Entropy-based thresholding

◆ Maximum likelihood thresholding

Threshold

21

Local Thresholding
➢ Segment an image into foreground and background regions based on local intensity variations

➢ Compute a threshold for each pixel based on the intensity values of its neighboring pixels

➢ Principles:
◆ Neighborhood definition: A neighborhood around each pixel is defined, typically a square or circular region

◆ Local statistics calculation: For each pixel, local statistics (mean, median, standard deviation, etc.) within the
neighborhood are computed

◆ Threshold calculation: A threshold value is determined with the local statistics for each pixel using approaches
✓ Mean thresholding: Using the local mean intensity value

✓ Adaptive mean thresholding: Using the local mean minus a constant

✓ Niblack's method: T =  +𝑘, where  is the local mean,  is the local standard deviation, and 𝑘 is a constant

✓ Sauvola's method: T =  (1 +𝑘( / R - 1)), where R is the dynamic range of standard deviation (typically 128 for an 8-bit image)

Threshold

22

Local Thresholding
➢ Adaptive mean method: T = local_mean - c where c = 2

image = cv2.imread('lena.bmp', cv2.IMREAD_GRAYSCALE)

window_size = 15
c = 2

binary_image = cv2.adaptiveThreshold(
image,
255, # 最大值，閾值化的像素設置為此值
cv2.ADAPTIVE_THRESH_MEAN_C, # 閾值類型：局部均值閾值法
cv2.THRESH_BINARY, # 閾值應用類型：二值化
window_size, # 計算閾值時考慮的鄰域大小（必須是奇數）
c # 常數，從計算出的均值中減去的值

)

Lena

https://drive.google.com/file/d/1ztufuBvk6VpZMCthV4__cg4YR2AmKPvh/view?usp=sharing

Threshold

23

Global Thresholding
➢ It uses a single threshold to classify each pixel in the image as either foreground or

background

➢ It is particular suitable for images with distinct contrast and uniform lighting

➢ Principle
◆ Choosing a threshold T: it can be typically determined by analyzing the histogram of the image

✓ Variance-based thresholding

✓ Entropy-based thresholding

✓ Maximum likelihood thresholding

◆ Classifying pixels: if the pixel is greater than or equal to T, it is set to the foreground; otherwise it is set to the
background

◆ Formula representation:

𝐵𝑖𝑛𝑎𝑟𝑦 𝑖𝑚𝑎𝑔𝑒 = ቊ
𝐹𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑤ℎ𝑖𝑡𝑒 𝑖𝑓 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 ≥ 𝑇

𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑏𝑙𝑎𝑐𝑘 𝑖𝑓 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 < 𝑇

Threshold

24

Global Thresholding

➢ Variance-based thresholding

◆ Threshold is determined by maximizing the between-class variance between the
foreground and background

◆ Well known methods: Otsu algorithm

◼ If a threshold T(k)=k, 0 < k < L-1 is selected, and it is used to threshold the input image into
two classes, c1 and c2, where c1 consists of all the pixels in the image with intensity values in the
range [0, k] and c2 consists of the pixels with values in the range [k+1, L-1]

◼ The probability Pi(k) is assigned to class ci is determined by the cumulative sum

𝑃1 𝑘 =෍

𝑖=0

𝑘

𝑝𝑖 𝑃2 𝑘 = ෍

𝑖=𝑘+1

𝐿−1

𝑝𝑖 = 1 − 𝑃1 𝑘

◆ The mean intensity value of the pixels in ci is

𝑚1 𝑘 =෍

𝑖=0

𝑘

𝑖𝑃 𝑖|𝑐1 =෍

𝑖=0

𝑘

𝑖𝑃 𝑐1|𝑖 𝑃(𝑖)/𝑃(𝑐1) =
1

𝑃1(𝑘)
෍

𝑖=0

𝑘

𝑖𝑝𝑖 𝑚2 𝑘 =
1

𝑃2(𝑘)
෍

𝑖=𝑘+1

𝐿−1

𝑖𝑝𝑖 𝑃(𝐴|𝐵) = 𝑃 𝐵|𝐴 𝑃(𝐴)/𝑃(𝐵)

Threshold

25

Global Thresholding

➢ Variance-based thresholding

◆ The cumulative mean (average intensity) up to level k is

◆ The cumulative mean of the entire image (global intensity) is

𝑚 𝑘 =෍

𝑖=0

𝑘

𝑖𝑝𝑖

𝑚𝐺 = ෍

𝑖=0

𝐿−1

𝑖𝑝𝑖

◆ To evaluate effectiveness of threshold at level k

𝜂 =
𝜎𝐵
2

𝜎𝐺
2 𝜎𝐺

2 = ෍

𝑖=0

𝐿−1

(𝑖 − 𝑚𝐺)
2𝑝𝑖

𝜎𝐵
2 = 𝑃1(𝑚1 −𝑚𝐺)

2+𝑃2(𝑚2 −𝑚𝐺)
2

global variance between-class variance

= 𝑃1𝑃2(𝑚1 −𝑚2)
2

=
(𝑚𝐺𝑃1 −𝑚)2

𝑃1(1 − 𝑃1)

Find the maximum

Threshold

26

Global Thresholding
➢ Variance-based thresholding

◆ Threshold is determined by maximizing the between-class variance between the foreground and
background

◆ Well known methods: Otsu algorithm

✓ Compute normalized histogram

✓ Calculate the cumulative sums, P1(k), for k=0, 1, 2, …, L-1

✓ Calculate the cumulative means, m(k), for k=0, 1, 2, …, L-1

✓ Calculate the global mean, mG

✓ Compute the between-class variance term, 𝜎𝐵
2(𝑘), for k =0, 1, 2, …, L-1

✓ Obtain the Otsu threshold, k*, as the value of k for which 𝜎𝐵
2(𝑘) is maximum

◼ If the maximum is not unique, obtain k* by averaging the values of k corresponding to the various
maxima detected

✓ Compute the global variance, 𝜎𝐺
2, and obtain the separability measure, *

Threshold

27

Global Thresholding
➢ Otsu algorithm

Threshold

28

Global Thresholding
➢ Variance-based thresholding

◆ Otsu algorithm

image = cv2.imread('lena.bmp', cv2.IMREAD_GRAYSCALE)

ret, otsu_threshold = cv2.threshold(
image,
0, # 使用Otsu時要忽略的值
255,
cv2.THRESH_BINARY + cv2.THRESH_OTSU

)

Threshold

29

Global Thresholding
➢ Entropy-based thresholding

◆ Threshold is determined by maximizing the sum of entropy values of the foreground and background of image

◆ Method
✓ Histogram calculation

✓ Probability distribution is computed by normalizing the histogram

✓ Foreground and background probability

calculate the probability P(i) of each gray level i

✓ Calculate entropy values

For each possible threshold T, calculate the probabilities of the foreground and background
Foreground probability P1(T) is the cumulative probability of gray levels from 0 to T
Background probability P2(T) is the cumulative probability of gray levels from T+1 to maximum gray level

✓ Maximize entropy

Foreground entropy H1(T) and background entropy H2(T) are calculated based on the probabilities of the foreground and background
The entropy calculation formula is H = -Σ(P(i)  log P(i))

H(T) = H1(T) + H2(T)

Threshold

30

Global Thresholding
➢ Maximum likelihood thresholding

◆ It is a statistical method used to segment an image into foreground and background

◆ Each class's pixel values follow a certain probability distribution, such as Gaussian distribution

◆ Method
✓ Histogram calculation

✓ Initialize the parameters of the probability distributions for the foreground and background, such as mean and variance

✓ Compute Within-class likelihood function (defined by user)

✓ Compute joint likelihood function

✓ Select optimal threshold

Threshold

31

Global Thresholding
➢ Maximum likelihood thresholding

def maximum_likelihood_thresholding(image):
Convert image to grayscale if it is not
if len(image.shape) > 2:

image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

Flatten the image to 1D array
pixel_values = image.flatten()

Calculate the histogram
histogram, bin_edges = np.histogram(pixel_values, bins=256, range=(0, 256))

Normalize the histogram
histogram = histogram / float(np.sum(histogram))

Initialize variables
max_likelihood = -np.inf
optimal_threshold = -1
epsilon = 1e-10

Threshold

32

Global Thresholding
➢ Maximum likelihood thresholding

for threshold in range(1, 256):
Split the histogram into two classes
w0 = np.sum(histogram[:threshold])
w1 = np.sum(histogram[threshold:])
if w0 == 0 or w1 == 0:

continue
mean0 = np.sum(np.arange(0, threshold) * histogram[:threshold]) / w0
mean1 = np.sum(np.arange(threshold, 256) * histogram[threshold:]) / w1
variance0 = np.sum(((np.arange(0, threshold) - mean0) ** 2) * histogram[:threshold]) / w0
variance1 = np.sum(((np.arange(threshold, 256) - mean1) ** 2) * histogram[threshold:]) / w1

within_class_likelihood = w0 * np.log(variance0 + epsilon) + w1 * np.log(variance1 + epsilon)

if within_class_likelihood > max_likelihood:
max_likelihood = within_class_likelihood
optimal_threshold = threshold

return optimal_threshold

Filter

04

Filter

A filter is a tool used in digital signal processing to alter specific
characteristics of the signal

➢ It can emphasize or suppress certain frequency components of a signal to
achieve effects

◆ Noise reduction

◆ Edge detection

◆ Smoothing

◆ …

➢ Types

◆ Low-pass filter (LPF)

◆ High-pass filter (HPF)

◆ Band-pass filter (BPF)

◆ Directional filter
34

Filter

Low-pass filter allows low frequency signals to pass through while
suppressing high frequency signals

➢ Median filter

◆ It locate pixels in image which have extreme and therefore highly improbable intensities,
and to ignore their actual intensities, replacing them with more suitable values

35

Filter

Low-pass filter allows low frequency signals to pass through while
suppressing high frequency signals

➢ Gaussian filter

◆ 1-D dimension

36

𝑓 𝑥 =
1

(2𝜋𝜎2)1/2
exp(−

𝑥2

2𝜎2
)

◆ 2-D dimension

𝐺 𝑥, 𝑦 =
1

2𝜋𝜎2
𝑒
−
𝑥2+𝑦2

2𝜎2

Filter

Low-pass filter allows low frequency signals to pass through while
suppressing high frequency signals

➢ Gaussian filter

◆ 2-D dimension
✓ Kernel_size = 3, sigma = 0.707 (0.5)

37

𝐺 𝑥, 𝑦 =
1

2𝜋𝜎2
𝑒
−
𝑥2+𝑦2

2𝜎2 and Normalize

(−1,−1) (0, −1) (1, −1)
(−1, 0) (0, 0) (1, 0)
(−1, 1) (0, 1) (1, 1)

0.045 0.122 0.045
0.122 0.332 0.122
0.045 0.122 0.045

Filter

Low-pass filter allows low frequency signals to pass through while
suppressing high frequency signals

➢ Gaussian filter

◆ 2-D dimension
✓ Kernel_size = 3, = 0.707 (0.5)

38

𝐺 𝑥, 𝑦 =
1

2𝜋𝜎2
𝑒
−
𝑥2+𝑦2

2𝜎2 and Normalize

(−1,−1) (0, −1) (1, −1)
(−1, 0) (0, 0) (1, 0)
(−1, 1) (0, 1) (1, 1)

0.045 0.122 0.045
0.122 0.332 0.122
0.045 0.122 0.045

(−1,−1) (0, −1) (1, −1)
(−1, 0) (0, 0) (1, 0)
(−1, 1) (0, 1) (1, 1)

0.045 0.122 0.045
0.122 0.332 0.122
0.045 0.122 0.045

0.135 0.368 0.135
0.368 1 0.368
0.135 0.368 0.135

𝑠𝑢𝑚
0.135 0.368 0.135
0.368 1 0.368
0.135 0.368 0.135

= 3.012

/ 3.012

Filter

Low-pass filter allows low frequency signals to pass through while
suppressing high frequency signals

➢ Gaussian filter

◆ How to determine kernel size? The kernel size is dependent of standard deviation  of
Gaussian function -> k  6+1

39

 = 2  = 5

Filter

High-pass filter (HPF) allows high frequency signals to pass through
while suppressing low frequency signals

In image preprocessing, HPF is used for edge detection and detail
enhancement which could highlight rapid changes and detailed features

➢ Sobel filter

➢ Laplacian filter

➢ Prewitt filter

➢ Unsharp filter

◆ Enhance details by subtracting blurry images

◆ Method
✓ Smooth image

✓ Result in high-frequency details by subtracting original image from smoothed image

✓ Add high-frequency details back to original image 40

Filter

➢ Sharp and unsharp masking

41

Filter

Color in image filtering

➢ Problem

◆ Color distortion
✓ Most image filters are designed for grayscale images and may process each color channel (e.g., RGB)

separately when applied to color images

✓ This can lead to inconsistencies between the color channels, resulting in unnatural color changes and
distortion

◆ Improper color space selection
✓ Processing images directly in the RGB color space can amplify differences between the color channels

◆ Computation complexity
✓ Color images have multiple color channels (typically three: red, green, blue), and each channel needs to be

processed individually, increasing computational complexity and processing time

◆ Boundary effect
✓ Some filters may produce artifacts when processing edge regions, leading to the loss or blurring of edge

details

42

Filter

Color in image filtering

➢ Some solutions

◆ Change to other color space
✓ ex: RGB to HSV or YCbCr

◆ Joint processing
✓ Process all color channels simultaneously to maintain the relative relationships between colors

✓ ex: Joint bilateral filtering, Joint Gaussian filtering, …etc.

◆ Specially designed color filter
✓ Use filters specifically designed for color images that consider the relationships between color channels,

effectively reducing color distortion and artifacts

✓ ex: Independent channel filtering, vector filtering, non-local means filter, …etc.

43

Filter

Color in image filtering

➢ RGB to HSV

44

Noise HSV Noise Reduction

Filter

Color in image filtering

➢ RGB to HSV

◆ Methods

✓ Channel normalize

45

✓ Find max and min

R' = R / 255 G' = G / 255 B' = B / 255

Cmax = max(R', G', B') Cmin = min(R', G', B')

Δ = Cmax- Cmin

✓ HSV

ℎ =

0 𝑖𝑓 ∆ = 0

60 × (
𝐺′ − 𝐵′

∆
𝑚𝑜𝑑 6) 𝑖𝑓 𝐶𝑚𝑎𝑥 = 𝑅′

60 × (
𝐵′ − 𝑅′

∆
+ 2) 𝑖𝑓 𝐶𝑚𝑎𝑥 = 𝐺′

60 × (
𝑅′ − 𝐺′

∆
+ 4) 𝑖𝑓 𝐶𝑚𝑎𝑥 = 𝐵′

𝑠 = ൞

0 𝑖𝑓 𝐶𝑚𝑎𝑥 = 0
∆

𝐶𝑚𝑎𝑥
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑣 = 𝐶𝑚𝑎𝑥

Filter

Color in image filtering

➢ HSV to RGB

◆ Methods

✓ Calculate the interval where the hue lies

46

✓ Calculate the middle value of RGB

C = v  s H' = H / 60 X = C  (1-|(H' mod 2) -1|)

✓ Final RGB value

(𝑅1, 𝐺, 𝐵1) =

(𝐶, 𝑋, 0) 𝑖𝑓 0 ≤ 𝐻′ < 1

(𝑋, 𝐶, 0) 𝑖𝑓 1 ≤ 𝐻′ < 2

(0, 𝐶, 𝑋) 𝑖𝑓 2 ≤ 𝐻′ < 3

(0, 𝑋, 𝐶) 𝑖𝑓 3 ≤ 𝐻′ < 4

(𝑋, 0, 𝐶) 𝑖𝑓 4 ≤ 𝐻′ < 5

(𝐶, 0, 𝑋) 𝑖𝑓 5 ≤ 𝐻′ < 6

m = v - c

(R, G, B) = (R1+m, G1+m, B1+m)

Filter

Color in image filtering

➢ Joint bilateral filtering

47

Noise Noise Reduction

Filter

Color in image filtering

➢ Joint bilateral filtering

◆ Spatial weight: determined by the Euclidean distance between pixels

48

𝜔𝑠 𝑝, 𝑞 = exp(−
||𝑝 − 𝑞||2

2𝜎𝑠
2)

◆ Intensity weight: determined by the difference between pixels

𝜔𝑟 𝐼(𝑝), 𝐺(𝑞) = exp(−
(𝐼(𝑝) − 𝐺(𝑞))2

2𝜎𝑠
2) where G is the guide image

◆ Joint weight: determined by the product of spatial weight and intensity weight

𝜔 𝑝, 𝑞 = 𝜔𝑠 𝑝, 𝑞 × 𝜔𝑟 𝐼(𝑝), 𝐺(𝑞)

◆ Filtered pixel: determined by the weighted average of all pixels in the neighborhood

𝐽 𝑝 =
σ𝑞∈𝑁𝑝

𝜔(𝑝, 𝑞) × 𝐼(𝑝)

σ𝑞∈𝑁𝑝
𝜔(𝑝, 𝑞)

Filter

Color in image filtering

➢ Vector (Median) filtering

◆ It reduces noise by sorting each pixel and the pixel within its neighborhood and picking
the pixel closest to the median

49Noise Noise Reduction

Filter

Color in image filtering

➢ Vector median filtering

◆ Define vector data: suppose in a kk window, the k2 pixel vector are vi=(Ri, Gi, Bi)

◆ Distance calculation: For each vector vi, calculate the distance between it and all other
vectors in the window by the Euclidean distance

50

◆ Sum distance: determined by the sum of distances between center and neighborhood
pixels

𝐷(𝑣𝑖) =෍

𝑗

𝑑(𝑣𝑖 , 𝑣𝑗)

◆ Select median value: determined by the smallest distance sum as the vector median of
the neighborhood

𝑑(𝑣𝑖 , 𝑣𝑗) = (𝑅𝑖 − 𝑅𝑗)
2+(𝐺𝑖 − 𝐺𝑗)

2+(𝐵𝑖 − 𝐵𝑗)
2

